A Novel Synthesis of α,β -Unsaturated Phosphonates

Aleksandra Skowrońska* and Piotr Dybowski

Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Łódź, Poland

Received 26 June 1990.

ABSTRACT

A stereoselective synthesis of α , β -unsaturated phosphonates based on the reaction of S-(β -oxoalkyl)dithiophosphates and Se-(β -oxoalkyl)selenophosphates with sodium dialkyl phosphites is described.

INTRODUCTION

We recently reported a new strategy for the conversion of aldehydes and ketones into olefins and functionalized olefins [1]. The reaction sequence illustrating this strategy is shown in Scheme 1. The starting aldehydes and ketones are routinely converted into silyl enol ethers [2], which are subjected to thiophosphorylation to give the corresponding phosphates **3** [3]. The addition of a selected nucleophile to **3** results in the formation of the oxyanion **4**, which rearranges by the phosphoryl group migration, affording thiolate **5**. Cyclization of **5** provides episulfide **6**, which is finally transformed into the corresponding olefin **7**.

This paper describes further extention of our approach, which, by utilizing sodium dialkyl phosphites as the nucleophile, gives access to α,β -unsaturated phosphonates 7. The phosphonates 7 have proved to be particularly valuable precursors in the synthesis of various organophosphorus and organic compounds [4]. Although a number of methods for introducing α,β -unsaturation into a carbon chain connected with a phosphoryl group are available,

the majority of them afford exclusively the phosphonates 7 of E configuration [5]. The method we present here is highly stereoselective and provides preferentially the (Z)-phosphonates 7.

RESULTS AND DISCUSSION

The reaction of S-(β -oxoalkyl) *O*,*O*-dialkyl dithiophosphates **3** with sodium dialkyl phosphites proceeds smoothly in benzene solution at ambient temperature giving episulfides **6** in excellent yield (90–95% according to ³¹P NMR data). Under treatment with triethyl phosphite or triphenylphosphine, the crude **6** is easily converted into the corresponding α , β -unsaturated phosphonates **7** (Scheme 2).

In light of the known analogy between thio- and selenophosphates, we have anticipated that similar reaction sequences could be performed with Se-(β -oxoalkyl) *O*,*O*-dialkyl selenophosphates 11 as the key intermediates. Indeed, the addition of sodium dialkyl phosphites to 11 leads to episelenides 12 which spontaneously and almost quantitatively decompose into the corresponding phosphonates 7 (Scheme 3). The synthesis of 11, which is a new class of compounds, was performed by selenophosphorylation of silyl enol ethers 2 with the phosphonium salt 10. All attempts to use oxophosphoraneselenyl chloride (RO)₂P(O)SeCl for the preparation of 11 failed due to the low stability of the chloride even at -40° C.

The transformations shown in Schemes 2 and 3 can also be accomplished as a one-pot reaction.

The representative examples of the olefination are summarized in Table 1. Several points of in-

^{*}To whom correspondence should be addressed.

SCHEME 1

i, (EtO)₂P(S)SBr 8 , -78 °C , 2h ii, (EtO)₃P or Ph₃P

SCHEME 2

terest should be noted from the presented data: i) when $R \neq H$, the olefination occurs with high stereoselectivity producing predominantly, or even exclusively, α,β -unsaturated (Z)-phosphonates 7 (entries 8–12); ii) the highest stereoselectivity is achieved when 11 is used as starting material (entries 8, 9); iii) in contrast to different reported methods, the general efficiency of the olefination does not depend on steric factors (entry 11).

The stereochemical course of the olefination is shown in Scheme 4. It is reasonable to assume that the addition of sodium dialkyl phosphites to thio-3 or selenophosphates 11, producing diastereoisomeric anions **4a** and **4b**, occurs reversibly. A number of precedents of similar reactions is known [7]. In such a situation one can conclude that the ratio of the final olefins is at least partially controlled by thermodynamic factors and cannot be predicted on the basis of the asymmetric induction models. It is obvious that the cyclization of the intermediates **5** must take place with inversion of configuration at the carbon adjacent to the phosphate moiety. On the other hand, the transformation of the episulfides **6** and the episelenides **12** into olefins **7** is known to proceed stereospecifically with retention of configuration [8].

Entry	3, 11	7	R	R'	R^2R^3	Z/E	Yield" %
1	3	а	Me	н	EtO		71
2	3	b	Me	н	i-PrO		71
3	3	С	Me	н	<i>n</i> -PrO		68
4	3	d	Me	н	<i>t</i> -Bu,Ph	_	60
5	11	е	н	Me	EtO	50/50	63
6	3	f	н	Me	EtO	65/35	80
7	3	g	н	<i>n-</i> Bu	EtO	42/58	77
8	3	ň	Et	Me	EtO	72/28	83
9	11	i	Et	Me	EtO	100/0	62
10	11	i	<i>n</i> -Pr	Et	EtO	79/21	58
11	11	k	<i>i-</i> Bu	<i>i-</i> Pr	EtO	100/0	85
12	3	ł	Ph	Me	EtO	78/22	75

ΤA	BL	E	1

SCHEME 4

EXPERIMENTAL

All reactions were performed under argon. Nuclear magnetic resonance spectra were recorded on MSL 300 and AC 200 Bruker spectrometers. Chemical shifts are in parts per million downfield from internal TMS (¹H and ¹³C) and external 85% H₃PO₄ (³¹P), and coupling constants are in Hertz. Silica gel (70–230 mesh) was used for the chromatographic separations.

Materials

Sodium dialkyl phosphites were freshly prepared prior to use by a standard method [9]. Silyl enol ethers **2** [2] and diethoxythioxaphosphoranesulfenyl bromide **8** [10] were prepared by the known literature procedures. S-(β -oxoalkyl) O,O-diethyl dithiophosphates **3** [3] and Se-(β -oxoalkyl) O,Odiethyl selenophosphate **11** [6] were obtained according to the Skowrońska et al. procedures.

General Procedure for the Preparation of α,β -Unsaturated Phosphonates **7** from **3**

A solution of freshly prepared sodium dialkyl phosphite (0.01 mol) in benzene (50 mL) was added to a stirred solution of an appropriate S-(β -oxoalkyl) O.O-diethyl dithiophosphate 3 (0.01 mol) in benzene (20 mL) at ambient temperature. Stirring was continued for an additional 1-24 h. The reaction mixture was washed several times with water and dried over MgSO₄. The solvent was evaporated in vacuo to give the crude episulfide 4. The 4 was then refluxed for 12 h with triethyl phosphite (2 mL). Excess triethyl phosphite and triethylphosphorothionate were removed in vacuo to yield a mixture of α,β -unsaturated (Z)- and (E)-phosphonates 7. The diastereoisomers were separated by column chromatography (benzene-ethyl acetate from 20:1 to 1:1) to give pure (Z)- and (E)-7 as the colorless oils.

General Procedure for the Preparation of α,β -Unsaturated Phosphonates 7 from 11

Freshly prepared sodium dialkyl phosphite (0.01 mol) in benzene (40 mL) was added to a solution of an appropriate Se-(β -oxoalkyl) O,O-dialkyl seleno-phosphate 11 (0.01 mol) in benzene (20 mL) at room temperature and the resulting solution was stirred for 1–12 h. The reaction mixture was then washed four times with water and dried (MgSO₄), and the solvent was evaporated to give the mixture of isomeric phosphonates 7. The diastereoisomers were separated as indicated in the previous general procedure to give pure (Z)- and (E)-7 as the colorless oils.

Yields of analytically pure compounds are listed in Table 1.

SPECTRAL DATA AND NOTES

- **7a:** ¹H NMR (CDCl₃, 300.13 MHz): δ 0.82 (td, 6H, $J_1 = 7$, $\Delta \nu = 0.5$, CH₃CH₂O); 1.42 (ddd \approx dt, 3H, $J_{PH} = 19$, $J_1 \cong J_2 = 1.5$, CH₃C=); 3.56 (m, 4H, OCH₂CH₃); 5.24 (d quin, 1H, $J_{PH} =$ 47, $J_2 = 2$, =CH trans to P); 5.46 (d sext, 1H, $J_{PH} = 22 J_2 \cong 1$, =CH cis to P). ³¹P NMR (CDCl₃, 121.49 MHz): δ 18.87. IR (neat): ν (C=C) 1650 cm⁻¹ ν (P=O) 1260. Anal. Calcd. for C₇H₁₅O₃P: C, 47.19; H, 8.43; P, 17.40. Found: C, 46.98; H, 8.31; P, 17.12.
- **7b:** ¹H NMR (CDCl₃, 300.13 MHz): δ 1.02 (dd, 12H, J = 6.5, $\Delta \nu = 6.5$, (C<u>H</u>₃)₂CHO); 1.62 (dt
- \cong ddd, 3H, J_{PH} = 14, J₂ \cong J₃ = 1, CH₃C[−]=); 4.36 (d sept, 2H, J_{PH} = 8, J₂ = 6.5, (CH₃)₂C<u>H</u>O); 5.40 (d quin, 1H, J_{PH} = 48, J₂ = 1.7, =CH trans to P); 5.67 (d sext, 1H, J_{PH} = 22, J₂ = 1.5, =CH cis to P). ³¹P NMR (C₆H₆, 24.289 MHz): δ 15.94. IR (neat): ν(C=C) 1648 cm⁻¹, ν(P=O) 1260. Anal. Calcd. for C₉H₁₉O₃P: C, 52.42; H, 9.29; P, 15.02. Found: C, 52.39; H, 8.97; P, 14.85.
- **7c:** ¹H NMR (CDCl₃, 80.018 MHz): δ 0.98 (t, 6H, J = 7, CH₃CH₂CH₂O); 1.68 (sext, 4H, J = 7, CH₃CH₂CH₂O); 1.93 (dt, 3H, $J_{PH} = 14$, $J_2 =$
- 1, CH₃C=); 3.98 (q, 4H, J = 7, CH₃CH₂CH₂O); 5.75 (d quin, 1H, $J_{PH} = 48$, $J_2 = 2$, ==CH trans to P); 5.96 (d sext, 1H, $J_{PH} = 21$, $J_2 = 1$, ==CH cis to P). ³¹P (neat, 24.289 MHz): δ 18.86. IR (neat): ν (C==C) 1650 cm⁻¹, ν (P==O) 1260 broad. Anal. Calcd. for C₉H₁₉O₃P: C, 52.42; H, 9.29; P, 15.02. Found: C, 51.94; H, 9.03; P, 14.76.
- **7d:** ¹H NMR (CDCl₃, 300.13 MHz): δ 1.17 (d, 9H, $J_{PH} = 14.7, t$ -Bu); 2.02 (dt, 3H, $J_1 = 11, J_2 =$ 1.3, CH₃C==); 5.85 (d quin, 1H, $J_{PH} = 37.2,$ $J_2 = 1.7, HCH=$ trans to P); 5.96 (d quin, 1H, $J_{PH} = 17, J_2 = 1.0, HCH=$ cis to P); 7.35 -7.82 (m_c, 5H_{arom}). ³¹P NMR (CDCl₃, 121.49 MHz): δ 40.0. IR (neat): ν (C=C) 1645 cm⁻¹ (low) ν (P=O) 1270 (low). Anal. Calcd. for C₁₃H₁₉OP: C, 70.25; H, 8.62; P, 13.94. Found: C, 69.89; H, 8.25; P, 13.80.
- **7e**-*cis*: ¹H NMR (CDCl₃, 300.13 MHz): δ 1.35 (td, 6H, $J_1 = 7$, $J_2 = 1$, CH₃CH₂O); 2.08 (ddd, 3H, J = 7, $J_2 = 4$, $J_3 = 1.5$, CH₃CH=); 4.18 (m, 4H, OCH₂CH₃); 5.62 (ddq, 1H, $J_{PH} = 20$, $J_{cis} = 13$, $J_3 = 1.5$, PCH=); 6.59 (ddq, 1H, $J_{PH} = 53$, $J_{cis} = 13$, $J_3 = 7$, CH₃CH=). ³¹P NMR (C₆H₆, 24.289 MHz): δ 16.24. R_F (AcOEt/C₆H₆ 1:1): 0.329. IR (neat): ν (C=C) 1655 cm⁻¹, ν (P=O) 1220 broad.
- **7e**-trans: ¹H NMR (CDCl₃, 300.13 MHz): δ 1.37 (td, 6H, $J_1 = 7$, $J_2 = 1$, CH₃CH₂O); 1.94 (ddd, 3H, J = 6.6, $J_2 = 2.2$, $J_3 = 1.5$, CH₃CH=);

4.23 (m, 4H, OC<u>H</u>₂CH₃); 5.70 (ddq, 1H, $J_{PH} = 21.8$, $J_{trans} = 17$, $J_3 = 1.8$, PCH==); 6.83 (ddq, 1H, $J_{PH} = 21.8$, $J_{trans} = 17$, $J_3 = 6.8$, CH₃C<u>H</u>==). ³¹P NMR (C₆H₆, 24.289 MHz): δ 17.23. R_F (AcOEt/C₆H₆ 1:1): 0.192. IR (neat): ν (C==C) 1640 cm⁻¹, ν (P==O) 1245. Anal. Calcd. for C₇H₁₅O₃P: C, 47.19; H, 8.49; P, 17.38. Found: C, 47.41; H, 8.62; P, 17.07.

- **7f**-*cis*: ¹H NMR (CDCl₃, 300.13 MHz): as **7e**-cis. ³¹P NMR (CDCl₃, 121.49 MHz): δ 16.24. IR (neat): ν (C=C) 1650 cm⁻¹, ν (P=O) 1220 broad.
- **7f**-*trans:* ¹H NMR (CDCl₃, 300.13 MHz): as **7e**trans. ³¹P NMR (CDCl₃, 121.49 MHz): δ 17.45. IR (neat): ν (C=C) 1640 cm⁻¹, ν (P=O) 1250. Anal. Calcd. for C₇H₁₅O₃P: C, 47.19; H, 8.49; P, 17.38. Found: C, 47.39; H, 8.71; P, 17.03.
- **7g**-*cis*: ¹H NMR (CDCl₃, 300.13 MHz): δ 0.88 (t, 3H, *J* = 7, C<u>H</u>₃ (CH₂)₃CH=); 1.32 (m_c, 6H and 2H, C<u>H</u>₃CH₂O and CH₃C<u>H</u>₂(CH₂)₂); 2.19 (m, 2H, =CHCH₂C<u>H</u>₂CH₂CH₃); 2.50 (m, 2H, =CHC<u>H</u>₂--); 4.10 (m, 4H, OC<u>H</u>₂CH₃); 5.54 (ddt, 1H, *J*_{PH} = 19.6, *J*_{cis} = 13, *J*₃ = 1.5, PCH==); 6.44 (ddt, 1H, *J*_{PH} = 50.0, *J*_{cis} = 13, *J*₃ = 7.9, CH₃--C<u>H</u>=). ³¹P NMR (CDCl₃, 121.49 MHz): δ 17.83.
- **7g**-*trans:* ¹H NMR (CDCl₃, 300.13 MHz): δ 0.88 (t, 3H, J = 7, CH₃(CH₂)₃CH=); 1.32 (m_c, 6H and 2H, CH₃CH₂O and CH₃CH₂(CH₂)₂); 2.20 (m, 2H, =CHCH₂CH₂CH₂CH₂CH₃); 2.50 (m, 2H, =CH--CH₂(CH₂)₂CH₃); 4.10 (m, 4H, OCH₂CH₃); 5.61 (ddt, 1H, $J_{PH} = 21.5$, $J_{trans} =$ 17, $J_3 = 1.5$, PCH=); 6.75 (ddt, 1H, $J_{PH} =$ 21.5, $J_{trans} = 17$, $J_3 = 6.7$, CH₃CH=). ³¹P NMR (CDCl₃, 121.49 MHz): δ 19.45. IR (neat): ν (C=C) 1635-1655 cm⁻¹, ν (P=O) 1230 broad. Anal. Calcd. for C₁₀H₂₁O₃P: C, 54.45; H, 9.61; P, 14.06. Found: C, 53.98; H, 9.32; P, 14.43.
- **7h**-(Z): ¹H NMR (CDCl₃, 300.13 MHz): δ 0.97 (t, 3H, J = 7.5, C<u>H</u>₃CH₂C=); 1.22 (t, 6H, J = 7, OCH₂C<u>H</u>₃); 1.93 (ddt, 3H, J₁ = 7.5, J_{PH} = 3.5, J₃ = 1.5, C<u>H</u>₃CH=); 2.12 (dq quin, 2H, J_{PH} =

13.5, $J_2 = 7.5$, $J_3 = 1.5$, $CH_3CH_2C=$); 3.95 (m, 4H, OCH_2CH_3); 6.16 (dqt, 1H, $J_{PH} = 50.7$, $J_2 = 7.5$, $J_3 = 1.5$, $CH_3CH=$). ³¹P NMR (CDCl₃, 121.49 MHz): δ 20.04.

7h-(*E*): ¹H NMR (CDCl₃, 300.13 MHz): δ 0.98 (t,

3H, J = 7.5, CH₃CH₂C=); 1.23 (t, 6H, J = 7, OCH₂CH₃); 1.93 (ddt, 3H, $J_1 = 7.5$, $J_{PH} = 3.5$, $J_3 = 1$, CH₃CH=); 2.13 (m, 2H, CH₃CH₂C); 4.0 (m, 4H, OCH₂CH₃); 6.62 (dq, 1H, $J_{PH} = 23$, $J_2 = 7$, CH₃CH=).³¹P NMR (CDCl₃, 121.49 MHz): δ 20.06. IR (neat): ν (C=C) 1630 cm⁻¹, ν (P=O) 1250. Anal. Calcd. for C₉H₁₉O₃P: C, 52.42; H, 9.29; P, 15.02. Found: C, 52.40; H, 9.21; P, 14.94. **7i**-(Z): ¹H NMR (CDCl₃, 300.13 MHz): as **7h**-(Z). ¹³C NMR (CDCl₃, 50.288 MHz, DEPT): δ 14.15

(=CHCH₃); 14.20 (CH₃CH₂C=); 16.32 and 16.40 (OCH₂CH₃); 28.19 (d, J = 12.3, CH₃CH₂C=); 61.13 (d, J = 5.4, OCH₂CH₃); 131.49 (d, J = 170, C-4°); 141.33 (d, J = 11.5, =CHCH₃). ³¹P NMR (CDCl₃, 121.49 MHz): as 7h-(Z). IR (neat): as 7h. Anal. Calcd. for

- **7h**-(Z). IR (neat): as **7h**. Anal. Calcd. for $C_9H_{19}O_3P$: C, 52.42; H, 9.29; P, 15.02. Found: C, 52.39; H, 9.02; H, 14.69.
- **7j**-(*Z*): ¹H NMR (CDCl₃/TMS, 300.13 MHz): δ $0.91 (t, 3H, J = 7.5, CH_3CH_2CH_2); 1.02 (t, 3H)$ $J = 7.5, CH_3CH_2CH=$); 1.32 (t, 6H, J = 7.5, OCH_2CH_3 ; 1.50 (sext, 2H, J = 7.5, $CH_3CH_2CH_2$; 2.17 (dtd, 2H, $J_{PH} = 15$, $J_2 =$ 7.5, $J_3 = 1$, $CH_3CH_2CH_2$); 2.46 (quin dt, 2H, $J_1 = 7.5, J_{PH} = 3.5, J_3 \approx 0.5, =CHCH_2CH_3);$ 4.05 (m, 4H, OCH₂CH₃); 6.13 (dtt, 1H, $J_{PH} =$ $50.8, J_2 = 7.5, J_3 \cong 1, = CHCH_2CH_3).$ ¹³C NMR (CDCl₃, 50.288 MHz): δ 13.87 (<u>CH₃CH₂CH₂</u>); 14.16 (CH₃CH₂CH=); 16.68 and 16.78 (OCH₂<u>C</u>H₃); 23.18 (CH₃<u>C</u>H₂CH₂); 24.00 (d, J = 6.7, =CHCH₂CH₃); 37.82 (d, J = 12.0, $CH_3CH_2CH_2$; 61.45 and 61.55 (OCH_2CH_3); 129.02 (d, J = 171.4, PC = CH); 149.76 (d, J =12.1, PC==CH). ³¹P NMR (CDCl₃, 80.961 MHz): δ 20.33. R_F (AcOEt/C₆H₆ 1:1) = 0.438.
- **7j**-(*E*): ¹H NMR (CDCl₃/TMS, 300.13 MHz): δ 0.92 (t, 3H, J = 7, C<u>H</u>₃CH₂CH₂); 1.04 (t, 3H, J = 7, C<u>H</u>₃CH₂CH=); 1.32 (t, 6H, J = 7, OCH₂C<u>H₃</u>); 1.49 (sext, 2H, J = 7, CH₃C<u>H₂CH₂</u>);

(m_c, $CH_3CH_2CH_2C =$ 2.20 4H, and =CH--CH₂CH₃); 4.05 (m, 4H, OCH₂CH₃); 6.55 (dt, 1H, $J_{PH} = 23.9$, $J_2 = 7$, =CHCH₂CH₃). ¹³C NMR (CDCl₃, 50.288 MHz): δ 13.56 (CH₃CH₂CH₂); 14.42 (CH₃CH₂CH=); 16.61 and 16.74 (CH_3CH_2O); 22.36 (d, J = 20.2, $=CHCH_2CH_3$; 22.89 (CH₃CH₂CH₂); 29.89 (d, J = 11.0, CH₃CH₂CH₂); 62.08 and 62.19 (OCH_2CH_3) ; 129.20 (d, J = 179.1, PC==CH); 149.18 (d, J = 9.7, PC=<u>C</u>H). ³¹P NMR (CDCl₃, 80.961 MHz): δ 22.56. \overline{R}_F (AcOEt/C₆H₆ 1:1): 0.263. IR (neat): ν (C=C) 1665 cm⁻¹ (major) 1655 (minor), ν (P=O) 1160–1200. Anal. Calcd. for C₁₁H₂₃O₃P: C, 56.39; H, 9.90; P, 13.22. Found: C, 56.30; H, 9.94; P, 12.91.

7k-(*Z*): ¹H NMR (CDCl₃, 300.13 MHz): δ 0.87 and 0.99 (d, 6H, J = 7, (C<u>H</u>₃)₂CHO); 1.32 (t, 6H, J = 7, OCH₂C<u>H</u>₃); 1.84 (sept, 1H, J = 7, (CH₃)₂C<u>H</u>CH₂); 2.03 and 2.08 (d, 1H, CH₂C==); 3.25 (d quin, 1H, $J_1 = 11$, $J_2 = 7$, $J_3 = 1$, =CHC<u>H</u>(CH₃)₂); 5.86 (dd, 1H, $J_{PH} = 50.9$, J_2 = 11, =C<u>H</u>CH(CH₃)₂). ³¹P NMR (CDCl₃, 24.289 MHz): δ 18.76. IR (neat): ν (C==C) 1630 cm⁻¹, ν (P==O) 1250. Anal. Calcd. for C₁₃H₂₇O₃P: C, 59.52; H, 10.38; P, 11.81. Found: C, 59.53; H, 10.34; P, 11.50.

71-(Z): ¹H NMR (CDCl₃ 300.13 MHz): δ 1.30 (t, 6H, J = 7.5, (C<u>H</u>₃CH₂O); 2.31 (dd, 3H, J₁ =

7.5, $J_{PH} = 3.8$, $C\underline{H_3CH}$ =); 4.11 (m, 4H, $CH_3C\underline{H_2O}$); 6.59 (dq, 1H, $J_{PH} = 48.6$, $J_2 = 7.5$, $CH_3C\underline{H}$ =); 7.30–7.60 (m_c, 5H_{aron}). ³¹P NMR (CDCl₃, 121.49 MHz): δ 16.90. IR (neat): ν (C=C) 1615 cm⁻¹, ν (P=O) 1250. R_F (AcOEt/C₆H₆ 1: 1) = 0.375.

71-(*E*): ¹H NMR (CDCl₃, 300.13 MHz): δ 1.25 (t, 6H, *J* = 7.5, CH₃CH₂O); 1.73 (dd, 3H, *J*₁ = 7.5, *J*_{PH} = 3.7, CH₃CH=); 4.05 (quin d, 4H, *J*₁ = 7.5, $\Delta \nu$ = 2.5, CH₃CH=); 7.18–7.40 (m_c, 5H_{arom}). ³¹P NMR (CDCl₃, 121.49 MHz): δ 18.21. IR (neat): ν (C=C) 1635, ν (P=O) 1250. *R_F* (AcOEt/C₆H₆ 1:1): 0.279. Anal. Calcd. for C₁₃H₁₉O₃P: C, 61.41; H, 7.53; P, 12.18. Found: C, 61.20; H, 7.31; P, 12.44.

REFERENCES

- [1] A. Skowrońska, P. Dybowski, Phosphorus, Sulfur, Silicon and Relat. Elem., 49/50, 1990, 275.
- [2] P. Cazeau, F. Duboudin, F. Moulines, O. Babot, J. Dunogues, *Tetrahedron*, 43, 1987, 2075.
- [3] P. Dybowski, A. Skowrońska, Synthesis, 1990, 609.
- [4] H. Paulsen, W. Greve, H. Kuhne, Chem. Ber., 106, 1973, 2124; H. Paulsen, H. Kuhne, Chem. Ber., 107,

1974, 2635; H. Paulsen, H. Kuhne, *Chem. Ber., 108,* 1975, 1239; L. Evelyn, L. O. Hall, L. Lynn, *Carbohydr. Res., 27,* 1973, 21; Y. Kashmann, M. Sprecker, *Tet-rahedron, 27,* 1971, 1331; C. Benezra, G. Ourisson, *Bull. Soc. Chim. Fr.,* 1967, 642; C. Benezra, *Tetra-hedron Lett.,* 1961, 4471; W. Waszkuć, T. Janecki, R. Bodalski, *Synthesis,* 1984, 1025.

- [5] B. Gallenkamp, W. Hoter, B-W. Krüger, F. Maurer, T. Pfister: *Houben-Weyl*, in M. Regitz (ed): *Methoden der Organischenchemie*, Vol. E2, Georg Thieme Verlag, Stuttgart, Germany, pp. 351–386 (1982); N. S. Wadsworth, *Organic Reactions*, Vol. 25, John Wiley, New York, Toronto, Sydney, pp. 98–101, (1977); E. Elia Aboujaoude, S. Lietje, N. Collognon, M. P. Teulade, Ph. Savignac, *Tetrahedron Lett.*, 26, 1985, 4435 and references cited therein.
- [6] P. Dybowski, A. Skowrońska, unpublished work.
- [7] W. S. Abramov, Dokl. Akad. Nauk SSSR, 73, 1950, 487; W. S. Abramov, N. S. Nazmutdinova, Zh. Obshch. Khim., 26, 1955, 1141; R. C. Miller, J. S. Bradley, L. A. Hamilton, J. Am. Chem. Soc., 78, 1956, 5299; R. C. Miller, C. D. Miller, W. Rogers, L. A. Hamilton, J. Am. Chem. Soc., 79, 1957, 424; S. A. Buckler, J. Am. Chem. Soc., 82, 1960, 4215.
- [8] N. P. Neureiter, F. G. Bordwell, J. Am. Chem. Soc., 81, 1959, 578; D. B. Denney, M. J. Boskin, J. Am. Chem. Soc., 82, 1960, 4736.
- [9] K. Sasse: Houben-Weyl, in E. Müller (ed): Methoden der Organischen Chemie., Vol. XII/2, Georg Thieme Verlag, Stuttgart, Germany, p. 38 (1964).
- [10] J. Michalski, M. Potrzebowski, A. Łopusiński, Angew. Chem. Int. Ed. Engl., 94, 1982, 135; A. Łopusiński, M. Potrzebowski, Phosphorus and Sulfur, 32, 1987, 5564; A. Łopusiński, L. Łuczak, J. Michalski, Phosphorus and Sulfur, 40, 1988, 233.